首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15411篇
  免费   1716篇
  国内免费   2249篇
  2024年   21篇
  2023年   250篇
  2022年   333篇
  2021年   791篇
  2020年   619篇
  2019年   784篇
  2018年   684篇
  2017年   511篇
  2016年   652篇
  2015年   1092篇
  2014年   1233篇
  2013年   1297篇
  2012年   1587篇
  2011年   1406篇
  2010年   1006篇
  2009年   917篇
  2008年   1023篇
  2007年   894篇
  2006年   794篇
  2005年   651篇
  2004年   565篇
  2003年   533篇
  2002年   442篇
  2001年   218篇
  2000年   189篇
  1999年   167篇
  1998年   146篇
  1997年   90篇
  1996年   77篇
  1995年   58篇
  1994年   82篇
  1993年   40篇
  1992年   43篇
  1991年   25篇
  1990年   20篇
  1989年   16篇
  1988年   9篇
  1987年   24篇
  1986年   10篇
  1985年   11篇
  1984年   8篇
  1983年   10篇
  1982年   6篇
  1981年   8篇
  1979年   5篇
  1976年   3篇
  1973年   3篇
  1972年   5篇
  1966年   2篇
  1965年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Hyperosmolarity plays an essential role in the pathogenesis of diabetic tubular fibrosis. However, the mechanism of the involvement of hyperosmolarity remains unclear. In this study, mannitol was used to evaluate the effects of hyperosmolarity on a renal distal tubule cell line (MDCK). We investigated transforming growth factor‐β receptors and their downstream fibrogenic signal proteins. We show that hyperosmolarity significantly enhances the susceptibility to exogenous transforming growth factor (TGF)‐β1, as mannitol (27.5 mM) significantly enhanced the TGF‐β1‐induced increase in fibronectin levels compared with control experiments (5.5 mM). Specifically, hyperosmolarity induced tyrosine phosphorylation on TGF‐β RII at 336 residues in a time (0–24 h) and dose (5.5–38.5 mM) dependent manner. In addition, hyperosmolarity increased the level of TGF‐β RI in a dose‐ and time‐course dependent manner. These observations may be closely related to decreased catabolism of TGF‐β RI. Hyperosmolarity significantly downregulated the expression of an inhibitory Smad (Smad7), decreased the level of Smurf 1, and reduced ubiquitination of TGF‐β RI. In addition, through the use of cycloheximide and the proteasome inhibitor MG132, we showed that hyperosmolarity significantly increased the half‐life and inhibited the protein level of TGF‐β RI by polyubiquitination and proteasomal degradation. Taken together, our data suggest that hyperosmolarity enhances cellular susceptibility to renal tubular fibrosis by activating the Smad7 pathway and increasing the stability of type I TGF‐β receptors by retarding proteasomal degradation of TGF‐β RI. This study clarifies the mechanism underlying hyperosmotic‐induced renal fibrosis in renal distal tubule cells. J. Cell. Biochem. 109: 663–671, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
32.
Semiparametric Regression in Size-Biased Sampling   总被引:1,自引:0,他引:1  
Ying Qing Chen 《Biometrics》2010,66(1):149-158
Summary .  Size-biased sampling arises when a positive-valued outcome variable is sampled with selection probability proportional to its size. In this article, we propose a semiparametric linear regression model to analyze size-biased outcomes. In our proposed model, the regression parameters of covariates are of major interest, while the distribution of random errors is unspecified. Under the proposed model, we discover that regression parameters are invariant regardless of size-biased sampling. Following this invariance property, we develop a simple estimation procedure for inferences. Our proposed methods are evaluated in simulation studies and applied to two real data analyses.  相似文献   
33.
34.
35.
36.
The migration of Schwann cells is critical for development of peripheral nervous system and is essential for regeneration and remyelination after nerve injury. Although several factors have been identified to regulate Schwann cell migration, intrinsic migratory properties of Schwann cells remain elusive. In this study, based on time-lapse imaging of single isolated Schwann cells, we examined the intrinsic migratory properties of Schwann cells and the molecular cytoskeletal machinery of soma translocation during migration. We found that cultured Schwann cells displayed three motile phenotypes, which could transform into each other spontaneously during their migration. Local disruption of F-actin polymerization at leading front by a Cytochalasin D or Latrunculin A gradient induced collapse of leading front, and then inhibited soma translocation. Moreover, in migrating Schwann cells, myosin II activity displayed a polarized distribution, with the leading process exhibiting higher expression than the soma and trailing process. Decreasing this front-to-rear difference of myosin II activity by frontal application of a ML-7 or BDM (myosin II inhibitors) gradient induced the collapse of leading front and reversed soma translocation, whereas, increasing this front-to-rear difference of myosin II activity by rear application of a ML-7 or BDM gradient or frontal application of a Caly (myosin II activator) gradient accelerated soma translocation. Taken together, these results suggest that during migration, Schwann cells display malleable motile phenotypes and the extension of leading front dependent on F-actin polymerization pulls soma forward translocation mediated by myosin II activity.  相似文献   
37.
Differences in the bacterial community structure associated with 7 skin sites in 71 healthy people over five days showed significant correlations with age, gender, physical skin parameters, and whether participants lived in urban or rural locations in the same city. While body site explained the majority of the variance in bacterial community structure, the composition of the skin-associated bacterial communities were predominantly influenced by whether the participants were living in an urban or rural environment, with a significantly greater relative abundance of Trabulsiella in urban populations. Adults maintained greater overall microbial diversity than adolescents or the elderly, while the intragroup variation among the elderly and rural populations was significantly greater. Skin-associated bacterial community structure and composition could predict whether a sample came from an urban or a rural resident ~5x greater than random.  相似文献   
38.
39.
The soluble ectodomain of fibroblast growth factor receptor-IIIc (sFGFR2c) is able to bind to fibroblast growth factor (FGF) ligands and block the activation of the FGF-signaling pathway. In this study, sFGFR2c inhibited lung fibrosis dramatically in vitro and in vivo. The upregulation of α-smooth muscle actin (α-SMA) in fibroblasts by transforming growth factor-β1 (TGF-β1) is an important step in the process of lung fibrosis, in which FGF-2, released by TGF-β1, is involved. sFGFR2c inhibited α-SMA induction by TGF-β1 via both the extracellular signal-regulated kinase 1/2 (ERK1/2) and Smad3 pathways in primary mouse lung fibroblasts and the proliferation of mouse lung fibroblasts. In a mouse model of bleomycin (BLM)-induced lung fibrosis, mice were treated with sFGFR2c from d 3 or d 10 to 31 after BLM administration. Then we used hematoxylin and eosin staining, Masson staining and immunohistochemical staining to evaluate the inhibitory effects of sFGFR2c on lung fibrosis. The treatment with sFGFR2c resulted in significant attenuation of the lung fibrosis score and collagen deposition. The expression levels of α-SMA, p-FGFRs, p-ERK1/2 and p-Smad3 in the lungs of sFGFR2c-treated mice were markedly lower. sFGFR2c may have potential for the treatment of lung fibrosis as an FGF-2 antagonist.  相似文献   
40.
Bone and tooth, fundamental parts of the craniofacial skeleton, are anatomically and developmentally interconnected structures. Notably, pathological processes in these tissues underwent together and progressed in multilevels. Extracellular vesicles (EVs) are cell-released small organelles and transfer proteins and genetic information into cells and tissues. Although EVs have been identified in bone and tooth, particularly EVs have been identified in the bone formation and resorption, the concrete roles of EVs in bone and tooth development and diseases remain elusive. As such, we review the recent progress of EVs in bone and tooth to highlight the novel findings of EVs in cellular communication, tissue homeostasis, and interventions. This will enhance our comprehension on the skeletal biology and shed new light on the modulation of skeletal disorders and the potential of genetic treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号